RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis.

نویسندگان

  • M A Escobar
  • E L Civerolo
  • K R Summerfelt
  • A M Dandekar
چکیده

Crown gall disease, caused by the soil bacterium Agrobacterium tumefaciens, results in significant economic losses in perennial crops worldwide. A. tumefaciens is one of the few organisms with a well characterized horizontal gene transfer system, possessing a suite of oncogenes that, when integrated into the plant genome, orchestrate de novo auxin and cytokinin biosynthesis to generate tumors. Specifically, the iaaM and ipt oncogenes, which show approximately 90% DNA sequence identity across studied A. tumefaciens strains, are required for tumor formation. By expressing two self-complementary RNA constructions designed to initiate RNA interference (RNAi) of iaaM and ipt, we generated transgenic Arabidopsis thaliana and Lycopersicon esculentum plants that are highly resistant to crown gall disease development. In in vitro root inoculation bioassays with two biovar I strains of A. tumefaciens, transgenic Arabidopsis lines averaged 0.0-1.5% tumorigenesis, whereas wild-type controls averaged 97.5% tumorigenesis. Similarly, several transformed tomato lines that were challenged by stem inoculation with three biovar I strains, one biovar II strain, and one biovar III strain of A. tumefaciens displayed between 0.0% and 24.2% tumorigenesis, whereas controls averaged 100% tumorigenesis. This mechanism of resistance, which is based on mRNA sequence homology rather than the highly specific receptor-ligand binding interactions characteristic of traditional plant resistance genes, should be highly durable. If successful and durable under field conditions, RNAi-mediated oncogene silencing may find broad applicability in the improvement of tree crop and ornamental rootstocks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translation start sequences affect the efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes.

Agrobacterium tumefaciens oncogenes cause transformed plant cells to overproduce auxin and cytokinin. Two oncogenes encode enzymes that convert tryptophan to indole-3-acetic acid (auxin): iaaM (tryptophan mono-oxygenase) and iaaH (indole-3-acetamide hydrolase). A third oncogene (ipt) encodes AMP isopentenyl transferase, which produces cytokinin (isopentenyl-AMP). Inactivation of ipt and iaaM (o...

متن کامل

Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens.

We investigated the effects of salicylic acid (SA) and systemic acquired resistance (SAR) on crown gall disease caused by Agrobacterium tumefaciens. Nicotiana benthamiana plants treated with SA showed decreased susceptibility to Agrobacterium infection. Exogenous application of SA to Agrobacterium cultures decreased its growth, virulence, and attachment to plant cells. Using Agrobacterium whole...

متن کامل

Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge.

Gall midges induce formation of host nutritive cells and alter plant metabolism to utilize host resources. Here we show that the gene Mayetiola destructor susceptibility-1 on wheat chromosome 3AS encodes a small heat-shock protein and is a major susceptibility gene for infestation of wheat by the gall midge M. destructor, commonly known as the Hessian fly. Transcription of Mayetiola destructor ...

متن کامل

Walnut Rootstock Transformation and Regeneration from Vegetative Tissue

The primary goal of this proposal is to develop novel regeneration technologies needed to engineer walnut rootstocks for pest and disease resistance. The productivity of the walnut industry of California is dependent the availability of superior rootstocks to combat soil disease and pest problems. Individual selections displaying resistance to either Phytophthora crown and root rots or to root ...

متن کامل

Small interfering RNA; principles, applications and challenges--

Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 23  شماره 

صفحات  -

تاریخ انتشار 2001